Algorithms for Fitting the Constrained Lasso

Brian R. Gaines \& Hua Zhou
Department of Statistics, North Carolina State University \& Department of Biostatistics, University of California, Los Angeles

Introduction

Constrained Lasso (James et al., 2013):

$$
\begin{array}{cl}
\text { minimize } & \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\rho\|\boldsymbol{\beta}\|_{1} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{\beta}=\boldsymbol{b} \text { and } \boldsymbol{C} \boldsymbol{\beta} \leq \boldsymbol{d}
\end{array}
$$

Augments the lasso (Tibshirani, 1996) with linear equality \& inequality constraints

- Can impose prior knowledge on the coefficient estimates
\triangleright Monotonicity, non-negativity, sum-to-zero, etc.

Motivation

NC STATE UNIVERSITY

Algorithms (fixed value of ρ)
Connection to the Generalized Lasso

Quadratic Programming
Standard QP form

$$
\begin{array}{cl}
\underset{\text { minimize }}{ } & \frac{1}{2} \boldsymbol{x}^{\prime} \boldsymbol{H} \boldsymbol{x}+\boldsymbol{f}^{\prime} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \text { and } \boldsymbol{C} \boldsymbol{x} \leq \boldsymbol{d} .
\end{array}
$$

Trick: decompose $\boldsymbol{\beta}=\boldsymbol{\beta}^{+}-\boldsymbol{\beta}^{-}$, then plug into (1) and massage into the form of (2)
$-|\beta|=\beta^{+}+\beta^{-}$handles the ℓ_{1} penalty term

Alternating Direction Method of Multipliers
A problem of the form

$$
\begin{array}{cl}
\operatorname{minimize} & f(\boldsymbol{x})+g(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x}+\boldsymbol{z}=\boldsymbol{c}
\end{array}
$$

can be solved using the following updates

$$
\begin{aligned}
& \boldsymbol{x}^{(t+1)} \leftarrow \operatorname{prox}_{\lambda f}\left(\boldsymbol{z}^{(t)}-\boldsymbol{c}+\boldsymbol{u}^{(t)}\right) \\
&\left.\boldsymbol{z}^{(t+1)} \leftarrow \operatorname{prox}_{\lambda g} \boldsymbol{x}^{(t+1)}-\boldsymbol{c}+\boldsymbol{u}^{(t)}\right) \\
& \boldsymbol{u}^{(t+1)} \leftarrow \boldsymbol{u}^{(t)}+\boldsymbol{x}^{(t+1)}+\boldsymbol{z}^{(t+1)}-\boldsymbol{c}
\end{aligned}
$$

Solution Path Algorithm (all values of ρ)

Steps to deriving the path algorithm:

- Derive the KKT stationarity conditions
- Apply the implicit function theorem to view as a function of ρ

$$
\frac{d}{d \rho}\left(\begin{array}{c}
\boldsymbol{\beta} \\
\boldsymbol{\lambda} \\
\boldsymbol{\mu}
\end{array}\right)=-\left(\begin{array}{ccc}
\boldsymbol{X}^{T} \boldsymbol{X} & \boldsymbol{A}^{T} & \boldsymbol{C}^{T} \\
\boldsymbol{A} & \mathbf{0} & \mathbf{0} \\
\boldsymbol{C} & \mathbf{0} & \mathbf{0}
\end{array}\right)^{-1}\left(\begin{array}{l}
\boldsymbol{s} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)
$$

Determine what keeps the RHS of this equation
constant for the non-zero ("active") coefficients
$>$ Constant derivatives \Rightarrow piecewise linear path
$>$ Changes in the derivatives correspond to kinks in the path

Events to monitor along the path:

- A non-zero ("active") coefficient becomes 0 (or vice versa)
- An inequality constraint hits or escapes the boundary ($\boldsymbol{c}_{l}^{T} \boldsymbol{\beta}=d_{l}$)
- Violations of the subgradient conditions

$$
\frac{\partial}{\partial \beta_{j}}\|\boldsymbol{\beta}\|_{1}=s_{j}(\rho)= \begin{cases}1 & \beta_{j}(\rho)>0 \\ {[-1,1]} & \beta_{j}(\rho)=0 \\ -1 & \beta_{j}(\rho)<0\end{cases}
$$

Algorithm Runtime Comparison: Simulation Results
Sum-to-zero Constraint

Non-negative Lasso

Algorithm runtimes from 20 replicates using an Intel iT-4510U 2.0 GHz processor with 8 GB memory. QP was solved using the Gurobi Optimizer. ADMM used a convergence tolerance of 10^{-4}. Solution path algorithm is averaged across the number of kinks in the path. $\rho_{\text {scale }}$ is the value of ρ as a fraction of the maximum ρ; that is, $=\rho_{\text {scale }} \cdot \max (\rho)$.

- ADMM is comparable or faster than QP but is more sensitive to ρ
- Solution path is comparable to other methods at $10-15$ values of ρ, but gives entire path
- ADMM is usually faster than QP
- Solution path has less of an advantage, but at worst is comparable to other methods

Generalized lasso (Tibshirani \& Taylor, 2011):

$$
\begin{equation*}
\text { minimize } \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\rho\|\boldsymbol{D} \boldsymbol{\beta}\|_{1}, \tag{3}
\end{equation*}
$$

$\boldsymbol{D} \in \mathbb{R}^{m \times p}$ is a fixed regularization matrix.
General formulation, includes many variants of the lasso as special case

- Lasso, fused and sparse fused lassos (1d, 2d, and graph versions)

Smoothing \& trend filtering
Can it be transformed into a constrained lasso?
Using a change of variables, after simplifying we ultimately end up with a constrained lasso problem

$$
\begin{array}{cl}
\text { minimize } & \frac{1}{2}\left\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{D}^{+} \boldsymbol{\alpha}-\boldsymbol{X} \boldsymbol{V}_{2} \boldsymbol{\gamma}\right\|_{2}^{2}+\rho\|\boldsymbol{\alpha}\|_{1} \\
\text { subject to } & \boldsymbol{U}_{2}^{T} \boldsymbol{\alpha}=\mathbf{0} .
\end{array}
$$

- Holds for any regularization matrix \boldsymbol{D}
\checkmark Other researchers required special structure on \boldsymbol{D} (James et al., 2013; Tibshirani \& Taylor, 2011)

Sparse Fused Lasso: Brain Tumor Data

- Verifies use of the constrained lasso to solve a generalized lasso
Contributions
Derive \& compare various algorithms for solving the
constrained lasso
\triangleright General formulation, no need to reinvent the wheel
\triangleright Novel derivation of an efficient solution path algorithm
Show that any generalized lasso can be formulated as a
constrained lasso
\triangleright Algorithms/results applicable to a large class of problems
Matlab code available in SparseReg toolbox on Github

