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Introduction Algorithms (fixed value of p) Connection to the Generalized Lasso
: Quadratic Programmin Alternating Direction Method of Multipliers Generalized lasso (Tibshirani & Taylor, 2011):
Constrained Lasso (James et al., 2013): 8 8 5 P ( y )
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Augments the lasso (Tibshirani, 1996) with linear equality & in- Trick: decompose 8 = 8" — B, then plug into (1) can be solved using the following updates General formulation, includes many variants of the lasso as special cases
equality constraints " and massage into the form of (2) SV pI‘OX)\f(Z(t) —c+ u(t>) » Lasso, fused and sparse fused lassos (1d, 2d, and graph versions)
» Can impose prior knowledge on the coetfficient estimates . _
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u cul T T2 —C Can it be transformed into a constrained lasso?
Solution Path Algorithm (all values of p) Using a change of variables, after simplifying we ultimately end up with
Motivation a constrained lasso problem
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| | Steps .to deriving the. pat.h algorft.hm. Events to monitor along the path: minimize ly — XDt — XViry|2 + pllall; (4)
Isotonic Lasso: Global Warming Data » Derive the.KK_.I' .statlon.arlty conditions | > A non-zero (“active”) coefficient becomes 0 (or whiect to Ulex — 0.
0.8+ > Appl}{ the implicit function theorem to view as a vice versa) 2
x Constrained Lasso (p = 0) function of p » An inequality constraint hits or escapes the > Holds for any regularization matrix D
— |sotonic Regression S ; 3 xXTx AT T\ (s boundary (¢! 8 = d) > Other researchers required special structure on D (James et al.,
D ga4. 7 Al=—1 A 00 0 » Violations of the subgradient conditions 2013; Tibshirani & Taylor, 2011)
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= » Determine what keeps the RHS of this equation 181l = si(p) = [-1,1] B(p) = 0
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© Algorithm runtimes from 20 replicates using an Intel i7-4510U 2.0 GHz processor with 8 GB memory. QP was » Derive & compare various algorithms for solving the
solved using the Gurobi Optimizer. ADMM used a convergence tolerance of 10~*. Solution path algorithm is constrained lasso
averaged across the number of kinks in the path. pse is the value of p as a fraction of the maximum p; that is, > General formulation, no need to reinvent the wheel
| | | | D = Pscale - Max(p). > Novel derivation of an efficient solution path algorithm
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more sensitive to p » Solution path has less of an advantage, but at constral.ne 4330 |
» Solution path is comparable to other methods worst is comparable to other methods > Algorithms/results applicable to a large class of problems

at 10-15 values of p, but gives entire path » Matlab code available in SparseReg toolbox on Github
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