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Introduction

Constrained Lasso (James et al., 2013):

minimize 1
2
‖y −Xβ‖2

2 + ρ‖β‖1 (1)
subject to Aβ = b and Cβ ≤ d.

Augments the lasso (Tibshirani, 1996) with linear equality & in-
equality constraints
I Can impose prior knowledge on the coefficient estimates
. Monotonicity, non-negativity, sum-to-zero, etc.

Motivation

Isotonic Lasso: Global Warming Data
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Constrained Lasso Solution Path
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Algorithms (fixed value of ρ)

Quadratic Programming
Standard QP form:

minimize 1
2
x′Hx + f ′x (2)

subject to Ax = b and Cx ≤ d.
Trick: decompose β = β+ − β−, then plug into (1)
and massage into the form of (2)

I |β| = β+ + β− handles the `1 penalty term

Alternating Direction Method of Multipliers
A problem of the form

minimize f (x) + g(x)
subject to x + z = c

can be solved using the following updates

x(t+1) ← proxλf(z(t) − c + u(t))
z(t+1) ← proxλg(x(t+1) − c + u(t))
u(t+1) ← u(t) + x(t+1) + z(t+1) − c

Solution Path Algorithm (all values of ρ)

Steps to deriving the path algorithm:
I Derive the KKT stationarity conditions
I Apply the implicit function theorem to view as a

function of ρ
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I Determine what keeps the RHS of this equation
constant for the non-zero (“active”) coefficients
. Constant derivatives ⇒ piecewise linear path
. Changes in the derivatives correspond to kinks
in the path

Events to monitor along the path:

I A non-zero (“active”) coefficient becomes 0 (or
vice versa)

I An inequality constraint hits or escapes the
boundary (cTl β = dl)

I Violations of the subgradient conditions

∂

∂βj
‖β‖1 = sj(ρ) =



1 βj(ρ) > 0
[−1, 1] βj(ρ) = 0
−1 βj(ρ) < 0

Algorithm Runtime Comparison: Simulation Results

Sum-to-zero Constraint
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Problem Size, (n, p)
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Non-negative Lasso

(50, 100) (100, 500) (500, 1000) (1000, 2000)
Problem Size, (n, p)
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Algorithm runtimes from 20 replicates using an Intel i7-4510U 2.0 GHz processor with 8 GB memory. QP was
solved using the Gurobi Optimizer. ADMM used a convergence tolerance of 10−4. Solution path algorithm is
averaged across the number of kinks in the path. ρscale is the value of ρ as a fraction of the maximum ρ; that is,
ρ = ρscale ·max(ρ).
I ADMM is comparable or faster than QP but is

more sensitive to ρ
I Solution path is comparable to other methods

at 10-15 values of ρ, but gives entire path

I ADMM is usually faster than QP
I Solution path has less of an advantage, but at

worst is comparable to other methods

Connection to the Generalized Lasso

Generalized lasso (Tibshirani & Taylor, 2011):

minimize 1
2
‖y −Xβ‖2

2 + ρ‖Dβ‖1, (3)

D ∈ Rm×p is a fixed regularization matrix.

General formulation, includes many variants of the lasso as special cases
I Lasso, fused and sparse fused lassos (1d, 2d, and graph versions)
I Smoothing & trend filtering

Can it be transformed into a constrained lasso?
Using a change of variables, after simplifying we ultimately end up with
a constrained lasso problem

minimize 1
2
‖y −XD+α−XV2γ‖2

2 + ρ‖α‖1 (4)
subject to UT

2 α = 0.

I Holds for any regularization matrix D
. Other researchers required special structure on D (James et al.,
2013; Tibshirani & Taylor, 2011)

Sparse Fused Lasso: Brain Tumor Data
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Constrained Lasso
Generalized Lasso

I Verifies use of the constrained lasso to solve a generalized lasso

Contributions

I Derive & compare various algorithms for solving the
constrained lasso
. General formulation, no need to reinvent the wheel
. Novel derivation of an efficient solution path algorithm

I Show that any generalized lasso can be formulated as a
constrained lasso
. Algorithms/results applicable to a large class of problems

I Matlab code available in SparseReg toolbox on Github

brgaines@ncsu.edu http://brgaines.github.io/


