Advancements in the understanding and prediction of high-shear, low-CAPE tornadoes

Introduction

- **What are high-shear, low-CAPE environments?**
 - Low shear: Large change in wind speed and/or direction with height.
 - High shear: Relatively weak environmental buoyancy for updrafts.

- **When and where do they produce severe weather?**
 - High shear, low-CAPE (HSLC) environments produce the majority of tornadoes and damaging winds during the cool season, especially overnight.

Forecasting Advancements

High shear, low-CAPE environments:
- High shear: Large change in wind speed and/or direction with height.
- Low CAPE: Relatively weak environmental buoyancy for updrafts.

Why are they a concern for forecasters and public?
- High shear: Low CAPE environments? (km)
- Low CAPE: High shear environments?
- High shear, low CAPE: CAPE environments?

- Trajectory analysis will allow us to determine how strong near-surface vortices form and how they produce tornadoes or damaging winds.

Ongoing Work

Methodology: Using an idealized numerical modeling framework, systematically alter the strength of lower tropospheric shear and CAPE to determine their effects on resulting development and evolution of simulated convection.

- Decomposition of governing equations will allow us to determine dominant processes and how they are sensitive to changing environmental variables.
- Trajectory analysis will allow us to determine how strong near-surface vortices form and how they produce tornadoes or damaging winds.

Objective: Determine the dynamic differences between environments supporting convection that produces strong, long-lived, near-surface vortices capable of tornadoes or damaging straight-line winds and those that do not.

Preliminary Findings and Future Work

- The importance of low-shear vector magnitude appears to be tied to its role in the development of numerous strong low-shear updrafts. These updrafts are necessary for the development of strong near-surface vortices.
- Increased low-shear level leads to more strong low-shear updrafts and near-surface vortices. This, in turn, increases the probability of vortices strengthening and producing tornadoes or damaging winds.
- Ongoing work seeks to elucidate the importance of low-shear CAPE and mid-level shear vector magnitude.

Acknowledgements: The author is grateful to his advisor, Dr. Matthew Parker, and committee members Dr. DelWayne Bohnenstiehl, Dr. Gary Lackmann, and Dr. Sandra Yuter for their constructive criticism through the evolution of this research. He would also like to thank co-author Jessica King and other members of the Convective Storms Group at NC State and the Collaborative Science, Technology, and Applied Research (CSTAR) program project of which this research is a part.