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of high-shear, low-CAPE tornadoes

Introduction

» What are high-shear, low-CAPE environments?
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» When and where do they produce severe weather?

Fraction of EF1+ tornadoes and significant
wind reports in HSLC environments
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High shear, low-CAPE (HSLC) environments produce the
majority of tornadoes and damaging winds during the cool
season, especially overnight
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HSLC tornadoes (red) and damaging winds (blue) occur
throughout the U.S. but are most common from Deep South
through Ohio Valley, extending eastward into Mid-Atlantic

» Why are they a concern for forecasters and public?
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Forecasting Advancements

Conceptual Diagrams
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Ongoing Work

Methodology: Using an idealized numerical modeling framework, systematically alter the
strength of lower tropospheric shear and CAPE to determine their effects on resulting
development and evolution of simulated convection.

Simulated radar reflectivity, cold pool
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Shading shows the strength Contours show tracked near-
of rotating updrafts from surface vortices, from weak
weak (white) to strong (black) (green) to strong (red)

Objective: Determine the dynamic differences between environments supporting
convection that produces strong, long-lived, near-surface vortices capable of tornadoes or
damaging straight-line winds and those that do not.

Preliminary Findings and Future Work

» The importance of low-level shear
vector magnitude appears to be tied
to its role in the development of
numerous strong low-level updrafts.
These updrafts are necessary for the
development of strong near-surface
vortices.

» Increased low-level shear leads to
more strong low-level updrafts and
near-surface vortices. This, in turn,
Increases the probability of vortices
strengthening and producing
tornadoes or damaging winds.

» Ongoing work seeks to elucidate the
importance of low-level CAPE and mid-
level shear vector magnitude.

» Decomposition of governing equations
will allow us to determine dominant
processes and how they are sensitive
to changing environmental variables.

» Trajectory analysis will allow us to
determine how strong near-surface
vortices form and how they produce
tornadoes or damaging winds.
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