
Figure 7: (a) Neutral red-stained MG63 cells suspended in alginate prior to ultrasound 
actuation; (b) Cells aligned using 2 MHz frequency;  (c) 4X Magnified optical image of cells post-
alignment and crosslinking;  (d) Fluorescence image of cells (neutral red uptake visible in living 
cells at 590 nm). Cells were 100% viable post-alignment.

Fig. 4: (a) Experimental setup with 3 MHz transducers; (b-d) Organization of micro-particles
at time points 0, 30 and 60 s respectively. Magnification = 4X; Scale bar = 500 µm
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Study1: Manipulating polymer particles in water (Fig 3a):

Study 2: Manipulating MG63 cells in hydrogel (Fig 3b):

● When engineering composites and tissues, it is important to recapitulate the
organization of micro-constituents such as cells, particles, and fibers in order
to mimic the characteristics of the original materials.

● Here, we study the use of ultrasound to create bulk standing pressure waves
in fluid matrices as a non-contact approach to preferentially organize
suspended micro-constituents in 3D.

Fig. 1: Microscopic images depicting the organization of different natural composites1,2

Primary Objectives of this study:

1. Investigate the system design and effect of critical process parameters
(ultrasound frequency and amplitude) on the alignment of micro-particles in
fluid matrices.

2. Demonstrate proof-of-concept for patterning living human cells within a
biocompatible hydrogel.

Fig. 5: Alignment of micro-particles after 60 s at 80 mVpp for (a) 1 MHz, (b) 1.5 MHz, (c) 2
MHz, and (d) 3 MHz. Scale bar = 500 µm

Fig. 6: Observed and theoretical inter-strand spacings between aligned micro-particles.
Spacing was inversely proportional to the frequency (p < 0.05), but was larger than the
theoretical estimate. Spacing at 160 mVpp were not significantly different from 80 mVpp of
excitation voltage (p > 0.05)
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Fig. 3: a) PE micro-particles; b) Neutral red stained MG63 cells.
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Study 2: Alignment of MG63 cells in Alginate hydrogel at 2 MHz frequency:
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Study 1: Alignment of Polyethylene micro-particles in water:

● Both polymer micro-particles (in water) and MG63 cells (in Alginate hydrogel)
could be aligned in linear patterns within 60 s of ultrasound actuation.

● Inter-strand spacing was inversely proportional ultrasound frequency (p < 0.05),
but the voltage amplitude did not have a significant effect.

● Ultrasound (2 MHz) was not detrimental to living cells.

● Future studies would entail optimizing the setup design and investigating the
fabrication of functional constructs with various alignment patterns.
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2. MATERIALS AND METHODS

● Pressure waves in fluid caused by the vibration of opposite transducers interfere to produce a

standing bulk acoustic pressure wave3: p(x,t) = PoCos(ωt)Cos(kx), where ω is the angular frequency,

k is the wavenumber and P0 is the pressure amplitude close to the transducer.

● The nodes of standing wave are parallel to the walls of the transducers and are separated by λ/2.

● The suspended micro-particles are pushed to the nodes due to the acoustic radiation forces4:

Frad = (π/3)(kl-kp)r3(2π/λ)Po
2Sin(4πx/λ), where kp and kl are the compressibility of the particle and

fluid respectively, and λ is the wavelength of ultrasound.
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Fig. 2: (a) Schematic of ultrasound-assisted manipulation testing system design; (b) Basic circuitry to drive the
transducer setup in parallel at a particular frequency and voltage amplitude.

Suspension Polyethylene (PE) micro-spheres (mean Ø 8 

µm) suspended in water at 2 mg/mL

Process

parameters

Frequency: 1, 1.5, 2, 3 MHz

Voltage amplitude: 80 mVpp, 160 mVpp

Metric Inter-strand spacing and alignment time

Method Optical microscopy and ImageJ analysis

Suspension Neutral red stained MG63 cells (mean size 

15 µm) suspended in Alginate at 2 mg/mL

Process

parameters

Frequency: 2 MHz

Voltage amplitude: 160 mVpp

Evaluation Inter-strand spacing and cell viability

Method Fluoroscence microscopy at 590 nm

● Structural anisotropy, often observed in composite materials such as wood
and in human tissues, is central to the function of these materials.

● For example, Balsa wood is characterized by densely packed honeycomb
arrangement of cells-fibers that results in its high strength to weight ratio.

● Similarly, cells and collagen fibers of ligaments/tendons are aligned along
the direction of tensile loading which these tissues typically experience.

After ultrasound actuation


