Prevalence and antimicrobial resistance of high concern Gram-negative pathogens isolated from distinct broiler production systems in the Southeastern United States

Jessica L. Parzygnat1,2, Lyndy Harden 2, Muhammed Muyyarikkandy 2, Sid Thakur 2
1Comparative Biomedical Sciences, 2Department of Population Health and Pathobiology

Background
- Broiler chicken is the number one consumed meat in the United States.1
- Popularity of owning backyard poultry has greatly increased given consumer demand for local foods.2
- Chickens are known to be a reservoir for antimicrobial resistant pathogens as exhibited by the CDC reported Salmonella outbreaks yearly from 2019-2022.3
- Other high concern pathogens include Campylobacter and extended-spectrum beta-lactamase (ESBL) E. coli. ESBL pathogens are resistant to commonly used antimicrobials in medicine.4
- Due to lack of research focusing on pathogens in backyard poultry production, there is little comparative data between backyard and commercial farms.
- This study aims to compare prevalence and antimicrobial resistance of pathogens from various samples on backyard and commercial farms.
- A better understanding of antimicrobial resistant pathogen persistence in these environments is important to improve food and production safety.

Methods
Sampling Scheme. This shows what days of production were sampled each type of farm. Birds on commercial farms move through production faster so the timeline is shortened. Both feral and environmental samples are collected at each of the 3 visits. Processing procedure for pathogens was adopted from the National Antimicrobial Resistance Monitoring System (NARMS) protocol. A questionnaire was also used to record farm management practices.

Disc Diffusion. This assay tests E. coli isolates for the ESBL phenotype. The discs used are 3rd generation cephalosporins alone (cefotaxime (CTX) and ceftazidime (CAZ)) as well as those in combination with a beta-lactamase inhibitor (clavulanic acid (CLA)). Positive ESBL phenotypes are identified by a zone of inhibition around the antimicrobial with clavulanic acid of 5mm or greater than that of the antimicrobial alone.

Antimicrobial Susceptibility Testing (AST). A broth microdilution method was used to determine the minimum inhibitory concentration for each isolate and antimicrobial concentrations. NARMS and CLSI breakpoints were applied to determine if isolates were resistant, susceptible, intermediate, or susceptible dose-dependent.

Results
Figure 1. Pathogen Prevalence. Bar chart shows the differences between commercial (N=10) and backyard (N=8) farm pathogen prevalence. For all pathogens, percentages of pathogen prevalence were significant in relation to farm type (Chi-squared test, p-value< .05). Percentages were also found to be significantly different between each other (Two proportion Z-test, * = p-value less than .05).

Figure 2. ESBL E. coli Antimicrobial Susceptibility Testing. Stacked bar chart shows the proportion of ESBL E. coli isolates that are resistant, intermediate, susceptible, or susceptible dose-dependent to the presented antimicrobials on the ThermoFisher ESBL Plate (ESB1F). N= 66 backyard and 18 commercial isolates.

Summary
- To our knowledge, this is the first study to investigate prevalence and antimicrobial susceptibility testing of Salmonella, Campylobacter, and ESBL E. coli isolated from backyard and commercial broiler farms in the Southeastern United States.
- High concern pathogens are prevalent in both bird fecal and environmental samples of both farm types.
- Multi-drug resistant Salmonella were found in commercial farms.
- Resistance to last resort antimicrobials, carbapenems, was found in ESBL E. coli isolates.
- The results from this study are important from a One Health perspective, as it has implications for human, animal, and environmental health alike.
- Future Directions: Campylobacter AST, finish sampling and AST for all 10 backyard farms, risk factor assessment based on questionnaire responses.

Acknowledgements
USDA NIFA SAS Grant
Thakur Molecular Epidemiology Lab
Food Animal Initiative at North Carolina State University

References